Lastest publications

 

Every year, numerous scientific articles are published using data distributed by the Epos-France research infrastructure, and before that by the French Seismological and Geodetic Network (Résif). In addition to journal articles, these data are used to produce theses, maps, books and book chapters, and conference papers.

Some publications do not directly or clearly mention the origin of the data used (particularly when these data are downloaded from aggregated databases). It is therefore impossible to draw up an exhaustive list of publications based on Epos-France resources. However, the bibliography provided here offers an overview of the wide range of scientific research made possible by Epos-France. You will also find references to photos, illustrations, posters and other documents deposited in the Hal Epos-France open archive, which illustrate the activities of the infrastructure.

The Epos-France bibliography is managed using the Zotero tool (https://www.zotero.org/).

Some of the publications below are available in full text in the Epos-France open archive (on Hal Science).

2024 publications, all types combined

(in alphabetical order of 1st author)

Cesca, S. et al. (2024) ‘Anti-repeating earthquakes and how to explain them’, Communications Earth & Environment, 5(1), p. 158. Available at: https://doi.org/10.1038/s43247-024-01290-1.
Douglas, J. et al. (2024) ‘Ground-motion models for earthquakes occurring in the United Kingdom’, Bulletin of Earthquake Engineering, 22(9), pp. 4265–4302. Available at: https://doi.org/10.1007/s10518-024-01943-8.
Heller, G. et al. (2024) ‘Separation of source, attenuation and site parameters of 2 moderate earthquakes in France: an elastic radiative transfer approach’, Geophysical Journal International, 238(2), pp. 700–718. Available at: https://doi.org/10.1093/gji/ggae176.
Jacquemond, L. et al. (2024) ‘Analysing 50 yr of the Lacq induced seismicity (Southwestern, France) highlights the role of fluid injection’, Geophysical Journal International, 238(1), pp. 214–234. Available at: https://doi.org/10.1093/gji/ggae119.
Kotha, S.R. and Traversa, P. (2024) ‘A Bayesian update of Kotha et al. (2020) ground-motion model using Résif dataset’, Bulletin of Earthquake Engineering, 22(4), pp. 2267–2293. Available at: https://doi.org/10.1007/s10518-023-01853-1.
Langlais, M. (2024) ‘1987-2023 map of earthquakes in the French Western Alps’. Available at: https://hal.science/hal-04413891.
Lion, G. et al. (2024) ‘Absolute Quantum Gravimeter as a promising field sensor for volcano monitoring’, in EGU. Vienna (AUSTRIA), Austria. Available at: https://doi.org/10.5194/egusphere-egu24-20659.
Ramadan, F. et al. (2024) ‘Adjusting an active shallow crustal ground motion model to regions with scarce data: application to France’, Bulletin of Earthquake Engineering, 22(8), pp. 3727–3751. Available at: https://doi.org/10.1007/s10518-024-01890-4.
Sira, C. (2024) ‘Evaluation des intensités macrosismiques’. PARIS, France, April. Available at: https://hal.science/hal-04534697.
Sira, C. et al. (2024) Rapport sismologique, Séisme de La Laigne (Charente-Maritime), 16 juin 2023, magnitude 5,3 Mlv (BCSF-Rénass), intensité communale maximale VII. BCSF-Rénass-2024-RP1. UAR830 CNRS ; Université de Strasbourg (UNISTRA). Available at: https://hal.science/hal-04471156.
Sira, C. et al. (2024) Séisme au nord-nord-est de Saint-Paul-sur-Ubaye, (Alpes de Haute-Provence), 16 mai 2023 à 6 h 24 TU, Magnitude 3,9 ML(RENASS), Intensité communale maximale III (EMS98). Université de Strabourg. Available at: https://hal.science/hal-04594511.
Sira, C. et al. (2024) Séisme ouest de Sarrancolin (Hautes-Pyrénées), 17 avril 2023 à 13h28 TU , magnitude 4 ML (RENASS), Intensité maximale : V (EMS98). BCSF-RENASS-2024-RP3. Bureau central sismologique français, Réseau national de surveillance sismique (UAR830 CNRS / Unistra). Available at: https://hal.science/hal-04502837.
Sira, C. et al. (2024) Séisme de Porrentruy (Suisse) 22 mars 2023 à 14h51 TU Magnitude 4,4 ML(RENASS) Intensité maximale (en France) : IV (EMS98). BCSF-RENASS-RP2-UAR830_240207-EVT230322. Ecole et observatoire des sciences de la Terre. Available at: https://hal.science/hal-04444089.

The last 15 scientific articles added to the bibliography

Widiyantoro, S. et al. (2018) ‘Seismic imaging and petrology explain highly explosive eruptions of Merapi Volcano, Indonesia’, Scientific Reports, 8(1). Available at: https://doi.org/10.1038/s41598-018-31293-w. Cite
Theunissen, T. et al. (2018) ‘Absolute earthquake locations using 3-D versus 1-D velocity models below a local seismic network: example from the Pyrenees’, Geophysical Journal International, 212(3), pp. 1806–1828. Available at: https://doi.org/10.1093/gji/ggx472. Cite
Theodoulidis, N. et al. (2018) ‘Basin effects on ground motion: the case of a high-resolution experiment in Cephalonia (Greece)’, Bulletin of Earthquake Engineering, 16(2), pp. 529–560. Available at: https://doi.org/10.1007/s10518-017-0225-4. Cite
Subedi, S. et al. (2019) ‘Imaging the Moho and the Main Himalayan Thrust in Western Nepal With Receiver Functions’, Geophysical Research Letters [Preprint]. Available at: https://doi.org/10.1029/2018gl080911. Cite
Solarino, S. et al. (2018) ‘Mantle wedge exhumation beneath the Dora-Maira (U)HP dome unravelled by local earthquake tomography (Western Alps)’, Lithos, 296–299, pp. 623–636. Available at: https://doi.org/10.1016/j.lithos.2017.11.035. Cite
Scholz, J.-R. et al. (2018) ‘SKS splitting in the Western Indian Ocean from land and seafloor seismometers: Plume, plate and ridge signatures’, Earth and Planetary Science Letters, 498, pp. 169–184. Available at: https://doi.org/10.1016/j.epsl.2018.06.033. Cite
Scholz, J.-R. et al. (2017) ‘Orienting Ocean-Bottom Seismometers from P-wave and Rayleigh wave polarizations’, Geophysical Journal International, 208, pp. 1277–1289. Available at: https://doi.org/10.1093/gji/ggw426. Cite
Schneider, F.M. et al. (2018) ‘Seismo-acoustic signals of the Baumgarten (Austria) gas explosion detected by the AlpArray seismic network’, Earth and Planetary Science Letters, 502, pp. 104–114. Available at: https://doi.org/10.1016/j.epsl.2018.08.034. Cite
Schippkus, S., Zigone, D. and Bokelmann, G. (2018) ‘Ambient-noise tomography of the wider Vienna Basin region’, Geophysical Journal International, 215(1), pp. 102–117. Available at: https://doi.org/10.1093/gji/ggy259. Cite
Salimbeni, S. et al. (2018) ‘Active and fossil mantle flows in the western Alpine region unravelled by seismic anisotropy analysis and high-resolution P wave tomography’, Tectonophysics, 731–732, pp. 35–47. Available at: https://doi.org/10.1016/j.tecto.2018.03.002. Cite
Provost, F. et al. (2018) ‘Automatic approach for increasing the location accuracy of slow-moving landslide endogenous seismicity: the APOLoc method’, Geophysical Journal International, 215, pp. 1455–1473. Available at: https://doi.org/10.1093/gji/ggy330. Cite
Provost, F., Hibert, C. and Malet, J.-P. (2017) ‘Automatic classification of endogenous landslide seismicity using the Random Forest supervised classifier’, Geophysical Research Letters, 44(1), pp. 113–120. Available at: https://doi.org/10.1002/2016GL070709. Cite
Provost, F. et al. (2018) ‘Towards a standard typology of endogenous landslide seismic sources’. Available at: https://doi.org/10.5194/esurf-2018-23. Cite
Polychronopoulou, K. et al. (2018) ‘Broadband, short-period or geophone nodes? Quality assessment of Passive Seismic signals acquired during the Maupasacq experiment’, First Break, 36(4), pp. 71–76. Available at: https://doi.org/10.3997/1365-2397.n0085. Cite
Petersen, G.M. et al. (2019) ‘Automated Quality Control for Large Seismic Networks: Implementation and Application to the AlpArray Seismic Network’, Seismological Research Letters, 90(3), pp. 1177–1190. Available at: https://doi.org/10.1785/0220180342. Cite