Lastest publications

 

Every year, numerous scientific articles are published using data distributed by the Epos-France research infrastructure, and before that by the French Seismological and Geodetic Network (Résif). In addition to journal articles, these data are used to produce theses, maps, books and book chapters, and conference papers.

Some publications do not directly or clearly mention the origin of the data used (particularly when these data are downloaded from aggregated databases). It is therefore impossible to draw up an exhaustive list of publications based on Epos-France resources. However, the bibliography provided here offers an overview of the wide range of scientific research made possible by Epos-France. You will also find references to photos, illustrations, posters and other documents deposited in the Hal Epos-France open archive, which illustrate the activities of the infrastructure.

The Epos-France bibliography is managed using the Zotero tool (https://www.zotero.org/).

Some of the publications below are available in full text in the Epos-France open archive (on Hal Science).

2024 publications, all types combined

(in alphabetical order of 1st author)

Bosser, P. et al. (2024) ‘Evaluation of tropospheric estimates from CentipedeRTK, a collaborative network of low-cost GNSS stations’, GPS Solutions, 28(4), p. 158. Available at: https://doi.org/10.1007/s10291-024-01699-3.
Burlot, R. (2024) ‘Campagne de caractérisation des sites hébergeant les stations du RLBP’. Available at: https://hal.science/EPOS-FRANCE/hal-04651176v1.
Cesca, S. et al. (2024) ‘Anti-repeating earthquakes and how to explain them’, Communications Earth & Environment, 5(1), p. 158. Available at: https://doi.org/10.1038/s43247-024-01290-1.
Damon, A. et al. (2024) ‘Impact des contraintes induites par les glaciations et l’érosion sur la stabilité des failles du nord de la France’, Lettre d’information Epos-France, (2), p. 12. Available at: https://hal.science/hal-04651299 (Accessed: 5 August 2024).
Douglas, J. et al. (2024) ‘Ground-motion models for earthquakes occurring in the United Kingdom’, Bulletin of Earthquake Engineering, 22(9), pp. 4265–4302. Available at: https://doi.org/10.1007/s10518-024-01943-8.
Heller, G. et al. (2024) ‘Separation of source, attenuation and site parameters of 2 moderate earthquakes in France: an elastic radiative transfer approach’, Geophysical Journal International, 238(2), pp. 700–718. Available at: https://doi.org/10.1093/gji/ggae176.
Jacquemond, L. et al. (2024) ‘Analysing 50 yr of the Lacq induced seismicity (Southwestern, France) highlights the role of fluid injection’, Geophysical Journal International, 238(1), pp. 214–234. Available at: https://doi.org/10.1093/gji/ggae119.
Kotha, S.R. and Traversa, P. (2024) ‘A Bayesian update of Kotha et al. (2020) ground-motion model using Résif dataset’, Bulletin of Earthquake Engineering, 22(4), pp. 2267–2293. Available at: https://doi.org/10.1007/s10518-023-01853-1.
Labazuy, P., Negri, R. de and Pichon, A.L. (2024) ‘Les volcans sur écoute : mise en oeuvre d’un système de surveillance à grande distance’, Lettre d’information Epos-France, p. 8. Available at: https://hal.science/hal-04651334 (Accessed: 5 August 2024).
Langlais, M. (2024) ‘1987-2023 map of earthquakes in the French Western Alps’. Available at: https://hal.science/hal-04413891.
Letort, J. (2024) ‘A Lacq, l’injection d’effluents industriels identifiée comme principale responsable des séismes’, Lettre d’information Epos-France, (2), p. 12. Available at: https://hal.science/hal-04651284 (Accessed: 5 August 2024).
Letort, J., Bertrand, V. and Albino, F. (2024) ‘Epos-France dans l’écosystème des infrastructures de recherche’, Lettre d’information Epos-France, (2), p. 3. Available at: https://hal.science/hal-04651359 (Accessed: 5 August 2024).
Lion, G. et al. (2024) ‘Absolute Quantum Gravimeter as a promising field sensor for volcano monitoring’, in EGU. Vienna (AUSTRIA), Austria. Available at: https://doi.org/10.5194/egusphere-egu24-20659.
Merlet, S. et al. (2024) ‘French gravimetry organization and its instrumental park’, IEEE Instrumentation and Measurement Magazine, 27(6). Available at: https://hal.science/hal-04651493 (Accessed: 5 August 2024).
Ramadan, F. et al. (2024) ‘Adjusting an active shallow crustal ground motion model to regions with scarce data: application to France’, Bulletin of Earthquake Engineering, 22(8), pp. 3727–3751. Available at: https://doi.org/10.1007/s10518-024-01890-4.
Schaeffer, J., Pedersen, H.A. and Résif-Dc, É. (2024) Rapport annuel des services de Résif-DC année 2023. report. INSU, CNRS. Available at: https://hal.science/hal-04441347 (Accessed: 5 August 2024).
Sira, C. (2024) ‘Evaluation des intensités macrosismiques’. PARIS, France, April. Available at: https://hal.science/hal-04534697.
Sira, C. et al. (2024) Rapport sismologique, Séisme de La Laigne (Charente-Maritime), 16 juin 2023, magnitude 5,3 Mlv (BCSF-Rénass), intensité communale maximale VII. BCSF-Rénass-2024-RP1. UAR830 CNRS ; Université de Strasbourg (UNISTRA). Available at: https://hal.science/hal-04471156.
Sira, C. et al. (2024) Séisme au nord-nord-est de Saint-Paul-sur-Ubaye, (Alpes de Haute-Provence), 16 mai 2023 à 6 h 24 TU, Magnitude 3,9 ML(RENASS), Intensité communale maximale III (EMS98). Université de Strabourg. Available at: https://hal.science/hal-04594511.
Sira, C. et al. (2024) Séisme ouest de Sarrancolin (Hautes-Pyrénées), 17 avril 2023 à 13h28 TU , magnitude 4 ML (RENASS), Intensité maximale : V (EMS98). BCSF-RENASS-2024-RP3. Bureau central sismologique français, Réseau national de surveillance sismique (UAR830 CNRS / Unistra). Available at: https://hal.science/hal-04502837.
Sira, C. et al. (2024) Séisme de Porrentruy (Suisse) 22 mars 2023 à 14h51 TU Magnitude 4,4 ML(RENASS) Intensité maximale (en France) : IV (EMS98). BCSF-RENASS-RP2-UAR830_240207-EVT230322. Ecole et observatoire des sciences de la Terre. Available at: https://hal.science/hal-04444089.
Togaibekov, A. et al. (2024) ‘Observing and Modeling Short‐Term Changes in Basal Friction During Rain‐Induced Speed‐Ups on an Alpine Glacier’, Geophysical Research Letters, 51(14), p. e2023GL107999. Available at: https://doi.org/10.1029/2023GL107999.

The last 15 scientific articles added to the bibliography

Bosser, P. et al. (2024) ‘Evaluation of tropospheric estimates from CentipedeRTK, a collaborative network of low-cost GNSS stations’, GPS Solutions, 28(4), p. 158. Available at: https://doi.org/10.1007/s10291-024-01699-3. Cite
Kotha, S.R. and Traversa, P. (2024) ‘A Bayesian update of Kotha et al. (2020) ground-motion model using Résif dataset’, Bulletin of Earthquake Engineering, 22(4), pp. 2267–2293. Available at: https://doi.org/10.1007/s10518-023-01853-1. Cite
Villegas-Lanza, J. et al. (2016) ‘Active tectonics of Peru: Heterogeneous interseismic coupling along the Nazca megathrust, rigid motion of the Peruvian Sliver, and Subandean shortening accommodation’, Journal of Geophysical Research : Solid Earth, 121(10), pp. 7371–7394. Available at: https://doi.org/10.1002/2016JB013080. Cite
Abraha, K.E. et al. (2017) ‘Spatial–temporal variations of water vapor content over Ethiopia: a study using GPS observations and the ECMWF model’, GPS Solutions, 21(1), pp. 89–99. Available at: https://doi.org/10.1007/s10291-015-0508-7. Cite
Dofal, A. et al. (2021) ‘Nature of the crust beneath the islands of the Mozambique Channel: Constraints from receiver functions’, Journal of African Earth Sciences, 184, p. 104379. Available at: https://doi.org/10.1016/j.jafrearsci.2021.104379. Cite
Bousquet, O. et al. (2021) ‘Impact of Tropical Cyclones on Inhabited Areas of the SWIO Basin at Present and Future Horizons. Part 1: Overview and Observing Component of the Research Project RENOVRISK-CYCLONE’, Atmosphere, 12(5), p. 544. Available at: https://doi.org/10.3390/atmos12050544. Cite
Bouffaut, L., Landrø, M. and Potter, J.R. (2021) ‘Source level and vocalizing depth estimation of two blue whale subspecies in the western Indian Ocean from single sensor observations’, The Journal of the Acoustical Society of America, 149(6), pp. 4422–4436. Available at: https://doi.org/10.1121/10.0005281. Cite
Barruol, G. et al. (2019) ‘Large-scale flow of Indian Ocean asthenosphere driven by Réunion plume’, Nature Geoscience, 12(12), pp. 1043–1049. Available at: https://doi.org/10.1038/s41561-019-0479-3. Cite
Andriampenomanana, F. et al. (2020) ‘Seismic velocity and anisotropy of the uppermost mantle beneath Madagascar from Pn tomography’, Geophysical Journal International, 224(1), pp. 290–305. Available at: https://doi.org/10.1093/gji/ggaa458. Cite
Adimah, N.I. and Padhy, S. (2020) ‘Depth dependent azimuthal anisotropy in Madagascar island from ambient noise tomography’, Tectonophysics, 789, p. 228513. Available at: https://doi.org/10.1016/j.tecto.2020.228513. Cite
Wamba, M.D. et al. (2021) ‘Multi‐Mode Waveform Tomography of the Indian Ocean Upper and Mid‐Mantle Around the Réunion Hotspot’, Journal of Geophysical Research: Solid Earth, 126(8). Available at: https://doi.org/10.1029/2020JB021490. Cite
Vallage, A. et al. (2021) ‘Multitechnology characterization of an unusual surface rupturing intraplate earthquake: the M L 5.4 2019 Le Teil event in France’, Geophysical Journal International, 226(2), pp. 803–813. Available at: https://doi.org/10.1093/gji/ggab136. Cite
Tsekhmistrenko, M. et al. (2021) ‘A tree of Indo-African mantle plumes imaged by seismic tomography’, Nature Geoscience, 14(8), pp. 612–619. Available at: https://doi.org/10.1038/s41561-021-00762-9. Cite
Tsang-Hin-Sun, E. et al. (2021) ‘Crustal seismic structure and anisotropy of Madagascar and southeastern Africa using receiver function harmonics: interplay of inherited local heterogeneities and current regional stress’, Geophysical Journal International, 226(1), pp. 660–675. Available at: https://doi.org/10.1093/gji/ggab118. Cite
Thorwart, M. et al. (2021) ‘Basin inversion: reactivated rift structures in the central Ligurian Sea revealed using ocean bottom seismometers’, Solid Earth, 12(11), pp. 2553–2571. Available at: https://doi.org/10.5194/se-12-2553-2021. Cite