Dernières publications

Chaque année, de nombreux articles scientifiques sont publiés grâce aux données distribuées par l’infrastructure de recherche Epos-France, et avant elle du Réseau sismologique et géodésique français (Résif). Outre les articles de revues, ces données alimentent des thèses, cartes, ouvrages et chapitres d’ouvrages, des communications à des congrès.

Certaines publications ne mentionnent pas directement ou clairement l’origine des données utilisées (notamment lorsque ces données sont téléchargées à partir de bases de données agrégatives). Il est donc impossible d’établir une liste exhaustive des publications basées sur les ressources Epos-France. La bibliographie que nous mettons ici à votre disposition offre cependant un aperçu du large éventail des recherche scientifiques rendus possibles par Epos-France. Vous y trouverez également les références des photos, illustrations, posters et autres documents déposés dans l’archive ouverte Hal Epos-France, qui illustrent l’activité de l’infrastructure.

La bibliographie Epos-France est gérée avec l’outil Zotero (https://www.zotero.org/).

Une partie des publications ci-dessous est disponible en texte intégral dans l’archive ouverte Epos-France (sur Hal Science).

Publications 2024, tous types confondus

(par ordre alphabétique du 1er auteur)

Cesca, S. et al. (2024) ‘Anti-repeating earthquakes and how to explain them’, Communications Earth & Environment, 5(1), p. 158. Available at: https://doi.org/10.1038/s43247-024-01290-1.
Douglas, J. et al. (2024) ‘Ground-motion models for earthquakes occurring in the United Kingdom’, Bulletin of Earthquake Engineering, 22(9), pp. 4265–4302. Available at: https://doi.org/10.1007/s10518-024-01943-8.
Heller, G. et al. (2024) ‘Separation of source, attenuation and site parameters of 2 moderate earthquakes in France: an elastic radiative transfer approach’, Geophysical Journal International, 238(2), pp. 700–718. Available at: https://doi.org/10.1093/gji/ggae176.
Jacquemond, L. et al. (2024) ‘Analysing 50 yr of the Lacq induced seismicity (Southwestern, France) highlights the role of fluid injection’, Geophysical Journal International, 238(1), pp. 214–234. Available at: https://doi.org/10.1093/gji/ggae119.
Kotha, S.R. and Traversa, P. (2024) ‘A Bayesian update of Kotha et al. (2020) ground-motion model using Résif dataset’, Bulletin of Earthquake Engineering, 22(4), pp. 2267–2293. Available at: https://doi.org/10.1007/s10518-023-01853-1.
Langlais, M. (2024) ‘1987-2023 map of earthquakes in the French Western Alps’. Available at: https://hal.science/hal-04413891.
Lion, G. et al. (2024) ‘Absolute Quantum Gravimeter as a promising field sensor for volcano monitoring’, in EGU. Vienna (AUSTRIA), Austria. Available at: https://doi.org/10.5194/egusphere-egu24-20659.
Ramadan, F. et al. (2024) ‘Adjusting an active shallow crustal ground motion model to regions with scarce data: application to France’, Bulletin of Earthquake Engineering, 22(8), pp. 3727–3751. Available at: https://doi.org/10.1007/s10518-024-01890-4.
Sira, C. (2024) ‘Evaluation des intensités macrosismiques’. PARIS, France, April. Available at: https://hal.science/hal-04534697.
Sira, C. et al. (2024) Rapport sismologique, Séisme de La Laigne (Charente-Maritime), 16 juin 2023, magnitude 5,3 Mlv (BCSF-Rénass), intensité communale maximale VII. BCSF-Rénass-2024-RP1. UAR830 CNRS ; Université de Strasbourg (UNISTRA). Available at: https://hal.science/hal-04471156.
Sira, C. et al. (2024) Séisme au nord-nord-est de Saint-Paul-sur-Ubaye, (Alpes de Haute-Provence), 16 mai 2023 à 6 h 24 TU, Magnitude 3,9 ML(RENASS), Intensité communale maximale III (EMS98). Université de Strabourg. Available at: https://hal.science/hal-04594511.
Sira, C. et al. (2024) Séisme ouest de Sarrancolin (Hautes-Pyrénées), 17 avril 2023 à 13h28 TU , magnitude 4 ML (RENASS), Intensité maximale : V (EMS98). BCSF-RENASS-2024-RP3. Bureau central sismologique français, Réseau national de surveillance sismique (UAR830 CNRS / Unistra). Available at: https://hal.science/hal-04502837.
Sira, C. et al. (2024) Séisme de Porrentruy (Suisse) 22 mars 2023 à 14h51 TU Magnitude 4,4 ML(RENASS) Intensité maximale (en France) : IV (EMS98). BCSF-RENASS-RP2-UAR830_240207-EVT230322. Ecole et observatoire des sciences de la Terre. Available at: https://hal.science/hal-04444089.

Les 15 derniers articles scientifiques ajouté à la bibliographie

Widiyantoro, S. et al. (2018) ‘Seismic imaging and petrology explain highly explosive eruptions of Merapi Volcano, Indonesia’, Scientific Reports, 8(1). Available at: https://doi.org/10.1038/s41598-018-31293-w. Cite
Theunissen, T. et al. (2018) ‘Absolute earthquake locations using 3-D versus 1-D velocity models below a local seismic network: example from the Pyrenees’, Geophysical Journal International, 212(3), pp. 1806–1828. Available at: https://doi.org/10.1093/gji/ggx472. Cite
Theodoulidis, N. et al. (2018) ‘Basin effects on ground motion: the case of a high-resolution experiment in Cephalonia (Greece)’, Bulletin of Earthquake Engineering, 16(2), pp. 529–560. Available at: https://doi.org/10.1007/s10518-017-0225-4. Cite
Subedi, S. et al. (2019) ‘Imaging the Moho and the Main Himalayan Thrust in Western Nepal With Receiver Functions’, Geophysical Research Letters [Preprint]. Available at: https://doi.org/10.1029/2018gl080911. Cite
Solarino, S. et al. (2018) ‘Mantle wedge exhumation beneath the Dora-Maira (U)HP dome unravelled by local earthquake tomography (Western Alps)’, Lithos, 296–299, pp. 623–636. Available at: https://doi.org/10.1016/j.lithos.2017.11.035. Cite
Scholz, J.-R. et al. (2018) ‘SKS splitting in the Western Indian Ocean from land and seafloor seismometers: Plume, plate and ridge signatures’, Earth and Planetary Science Letters, 498, pp. 169–184. Available at: https://doi.org/10.1016/j.epsl.2018.06.033. Cite
Scholz, J.-R. et al. (2017) ‘Orienting Ocean-Bottom Seismometers from P-wave and Rayleigh wave polarizations’, Geophysical Journal International, 208, pp. 1277–1289. Available at: https://doi.org/10.1093/gji/ggw426. Cite
Schneider, F.M. et al. (2018) ‘Seismo-acoustic signals of the Baumgarten (Austria) gas explosion detected by the AlpArray seismic network’, Earth and Planetary Science Letters, 502, pp. 104–114. Available at: https://doi.org/10.1016/j.epsl.2018.08.034. Cite
Schippkus, S., Zigone, D. and Bokelmann, G. (2018) ‘Ambient-noise tomography of the wider Vienna Basin region’, Geophysical Journal International, 215(1), pp. 102–117. Available at: https://doi.org/10.1093/gji/ggy259. Cite
Salimbeni, S. et al. (2018) ‘Active and fossil mantle flows in the western Alpine region unravelled by seismic anisotropy analysis and high-resolution P wave tomography’, Tectonophysics, 731–732, pp. 35–47. Available at: https://doi.org/10.1016/j.tecto.2018.03.002. Cite
Provost, F. et al. (2018) ‘Automatic approach for increasing the location accuracy of slow-moving landslide endogenous seismicity: the APOLoc method’, Geophysical Journal International, 215, pp. 1455–1473. Available at: https://doi.org/10.1093/gji/ggy330. Cite
Provost, F., Hibert, C. and Malet, J.-P. (2017) ‘Automatic classification of endogenous landslide seismicity using the Random Forest supervised classifier’, Geophysical Research Letters, 44(1), pp. 113–120. Available at: https://doi.org/10.1002/2016GL070709. Cite
Provost, F. et al. (2018) ‘Towards a standard typology of endogenous landslide seismic sources’. Available at: https://doi.org/10.5194/esurf-2018-23. Cite
Polychronopoulou, K. et al. (2018) ‘Broadband, short-period or geophone nodes? Quality assessment of Passive Seismic signals acquired during the Maupasacq experiment’, First Break, 36(4), pp. 71–76. Available at: https://doi.org/10.3997/1365-2397.n0085. Cite
Petersen, G.M. et al. (2019) ‘Automated Quality Control for Large Seismic Networks: Implementation and Application to the AlpArray Seismic Network’, Seismological Research Letters, 90(3), pp. 1177–1190. Available at: https://doi.org/10.1785/0220180342. Cite